Hot Runner Controller AK60

Instruction Manual

senso

INDEX

 INTRODUCTION General specifications 	
2. INPUT / OUTPUT 2.2. Input Setup 2.2. Alarm	4
3. AUTOTUNING 3.1. Step Response Autotuning 3.2. Relay Feedback Autotuning	7
4. CURRENT MEASUREMENT	9
 OPERATION. Introduction. Description of the front panel	10 12 12 13 14 17
6. TECHNICAL SPECIFICATIONS	21
7. ERROR AND ALARM MESSAGES	22
8. GUARANTEE AND SERVICE	23

1. INTRODUCTION

This instruction manual describes how to install and start up the AK60 hot runner controller.

You must read the instruction manual before starting up the equipment.

1.1. General specifications

The model AK60 is a high-performance process controller specifically designed for temperature control in hot runner systems. Its most outstanding features are as follows:

• Input:

Thermocouple type J: 0...600°C (Fe-CuNi, IEC584) Thermocouple type K: 0...1200°C (NiCr-NiAl, IEC584)

- Control output by triac of 3500W.
- PID or PI+D (PI with automatic derivative) control type with 2 different types of autotuning algorithms user-selectable depending on the application.
- Automatic or Manual working mode.
- Double large digit display.

4 digits of 10 mm for the process variable.

- 4 digits of 10 mm for the Set Point.
- Protection temperature alarm with internal power stop (Optional)
- Supply: 85...265 Vac 50/60 Hz.

2. INPUTS / OUTPUTS

2.1. Signal input

Input signal must be selected setting the parameter

Thermocouple type J: 0...600°C (Fe-CuNi, IEC584) Thermocouple type K: 0...1200°C (NiCr-NiAl, IEC584)

2.2. Alarm

The model AK60 can be fitted with 2 alarm. The alarm output is by relay with SPST contacts (a voltage-free contact).

Configuration depends on parameters **ERE** y **ERE**.

1) Set point.

<u>Absolute Set Point</u> (**SPRE**): The activating / deactivating point of the alarm is independent of the value of the process set point. For example, if an alarm Set Point of 200°C is configured, the alarm will change status at that temperature, regardless of the value of the pre-set temperature for the process (process Set Point).

<u>Current setpoint</u> (**LEP**), **LEP**, **LEP**, **LEP**): The activating / deactivating point of the alarm is referred to the current measured at the heating element. If this value is out of the range [CSPx-Crx,CSPx+Crx] alarm is activated. All those values are independent on the working setpoint. All those values are independent on the working setpoint. For instance if **LEP** is set to 1,2A and **LEP** is set to 0.3A, alarm will change its state if current measured is over 1.5A or under 0.9A.

<u>Relative Set Point</u> (**FRE** y **FRE**): The activating / deactivating point of the alarm is always linked to the value of the process set point. For example, if a relative Set Point of 20°C is configured, the alarm's status change point will always be 20°C higher than the Set Point of the process. With a Set Point of 100°C for the process, the alarm is set at 120°C. With a Set Point of 250°C, the alarm will be set at 270°C.

<u>Window Set Point</u> (**FRE**): The activating / deactivating point of the alarm becomes a symmetrical value, both above and below the process Set Point. For example, with a window Set Point of 10° for the alarm and a process Set Point of 50°C, the alarm will change status at 40°C and 60°C. With a process Set Point of 250°C, the alarm will change status at 240°C and 260°C.

2) Enabling type.

<u>High alarm</u>: The alarm is triggered when the process variable is greater than the alarm set point. For example, if the alarm's Set Point is at 250°C, the alarm will remain activated as long as the process is above this temperature.

<u>Low alarm</u>: The alarm is triggered when the process variable is less than the alarm set point. For example, if the alarm's Set Point is at 250°C, the alarm will remain activated as long as the process is below this temperature.

<u>Window alarm</u>: The alarm remains activated as long as the process variable is outside a certain value around the process Set Point, both above and below it. For example, if the process has a Set Point of 200°C and the alarm a window signal of 30°C, the alarm will be triggered whenever the process is below 170°C and above 230°C.

<u>Current alarm</u>: The alarm activates when the measured current de salida is out of range regarding the currentg setpoint, either above or under. For instance if **ESP** is set to 1,2A and **ESP** is set to 0.3A,

alarm will change its state if current measured is over 1.5A or under 0.9A.

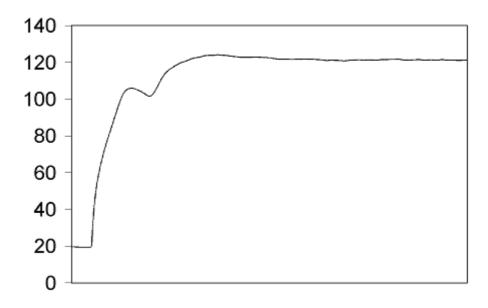
The alarm type of action is controlled by the parameter **BEET** and **BEET**:

<u>Direct Action (Ider</u>): The output relay is normally deactivated and is enabled when the enabling condition of the alarm occurs.

<u>Reverse Action (TEW)</u>: The output relay is normally activated and is disabled when the enabling condition of the alarm occurs.

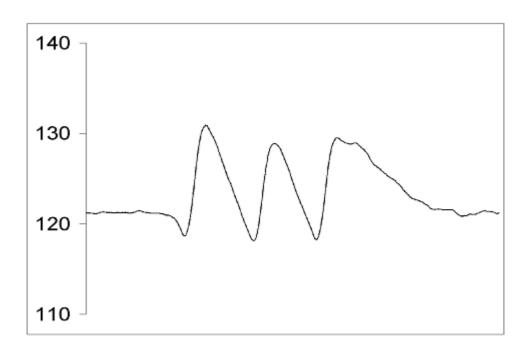
senso

Serie Akros


3. AUTOTUNING

Autotune type can be selected trough parameter

3.1. Step Response autotuning.


The autotuning process is a very useful function for determining the values of \mathbf{PE} , \mathbf{PE} and \mathbf{E} which will give the process the greatest stability.

Step Response autotuning takes place below the set point and it can only be enabled if the process variable is less than 50% of the set point value. This process consists of supplying 100% power and disabling the output when the process is at around 80% of the signal. Next, the controller measures the inertia of the process and deduces the values of the PID parameters for the process in question.

3.2. Relay Feedback autotuning.

Relay feedback autotuning has the advantage that it takes place on the set point and can be enabled at any time. However, it has the drawback that, to perform the tuning, the process has to exceed the signal several times and there may be cases where this is unwise, due to damages that could occur in the process.

4. MEDIDA DE CORRIENTE

AK60 is able to measure power or current consumption using a toroidal transformer. Current measure can be activated setting parameter **EFFF** to on. Once done, current measurement parameters will be available.

The end of scale of the measurement can be selected to 25A or 50A using parameters **Scene**.

To be able to measure current, AK60 needs to supply output pulses of at least 300ms. If output power provides output pulses shorter than this for more time than **EEE** x (Control Cycle), a 300ms pulse will be forced to allow a valid measure.

The parameter **D S** allows to setup which value is shown on display. Values available are **EFF** (current) and **EFF** (power). If power is selected, the line voltage can be setup trough parameter **L nE**.

5. OPERATION

5.1. Introduction

Akros series instruments are fully configurable. This feature means there are a large number of configuration parameters. In order to make it easier to program the parameters, for each instrument, only those parameters which, because of their configuration, are available.

Point 5.5 describes all the configurable parameters and point 5.6 sets out the route to be followed to access each of the parameters in graphic form.

The configuration menus have been arranged in 3 levels:

- Level 1 The configuration parameters of the work mode appear, but not those affecting the instrument's configuration.
- Level 2 At this level, the instrument's configuration parameters not depending on the physical configuration (inputs and outputs) are configured.
- Level 3 At this level, the instrument is configured by specifying values affecting the input and output signals.

senso

Serie Akros

Operation of the instrument is arranged with 4 keys, the functions of which are as follows:

Tecla

Función

Function key. It enters to instrument menus when pressed once. Once there is inside the menu, it goes to next level menu when pressed during 2 seconds.

Key SSP. If instrument is working in normal mode, this key allows activating the secondary setpoint by holding this key during two seconds.

Enter key. It should be pressed in order to save changes to any parameter.

Man key. I should be pressed during two seconds in order to switch working mode from automatic to manual (and reverse way). In manual working mode, the power output can be varied by keys \bigvee y \checkmark .

Key Up. It is used to increment a parameter value. If it is hold, the variation of the parameter increases.

Key Tune. It should be pressed during two seconds in order to activate autotuning process. It will be executed when it is posible to activate autoning depending on parameter

Tecla Down. It is used to decrement a parameter value. If it is hold, the variation of the parameter decreases.

Key Out. In normal operation mode, it switches the display to show setpoint, power output (P) or current measured (A o u (if power is cosen).

5.2. Description of the front panel

There are also the following indicator lights:

OUT	Control or heating output
-----	---------------------------

- AL Lights up if any alarm is active
- MAN Lights up when the instrument is working in manual mode
- **SSP** Lights up when the secondary Set Point is enabled

Switch 16 A with a magnetothermic that serves as a protection of the load and the regulator. If current is over 16 A, magnetothermic acts and leave the device inactive.

ON/OFF

If the regulator is on, switch shows the power output through a pilot.

5.3. Start-up

When connecting the power supply voltage, the instrument displays the message "TEST ON" while the controller initiates all the internal parameters.

5.4. Power loss

When the instrument loses the power supply voltage, all the parameters remain stored in the instrument's internal memory. When the power is restored, the controller will re-start control of the process using the function configured in parameter **SEFT** (**nume**, **supply**).

senso

5.5. Description of all the configurable parameters

		•	
Símbolo	Descripción	Valor	Fábrica
SP	Setpoint of the process	From SPLL To SPHL	150
Pb	Proporcional band	From 0.1% To 100.0%	2,5
<u> </u>	Integral time	From 1s To 4000s	320
Ed	Derivative time	From 1s To 4000s	60
[4	Cycle of control output	From 1s To 120s	1
[A	Configuration of the work mode alarm 1	BFF : disabled High alarm	OFF
Act {	Alarm 1 actuator direction	ि त : Relay is normally open त्या : relay is normally closed	dı r
SPAX	Absolute Alarm 1 Setpoint	From SPLL To SPHL	155
478 {	Alarm 1 Hysteresis	From 0 To 9999	1
583	Configuration of the work mode alarm 2	UFF : Disabled Hu : Absolute high alarm Lo : Absolute low alarm C.Hu : Relative high alarm C.Lo : Relative low alarm Uund : Window alarm Curr : Window current alarm	DFF
Act2	Alarm 2 actuator direction	ਰਾ ਸ : Relay is normally open ਸ ਦ : Relay is normally closed	dı r
5882	Absolute Alarm 2 Setpoint	From SPLL To SP.HL	155
r 82	Relative Alarm 2 Setpoint	From -999 To 9999	5
[592	Setpoint of current regarding alarm 2	Only last value of measured current can be assigned	0
[-3	Relative setpoint of current regarding window alarm 2	From 0,1 To 50,0	0,5
8785	Alarm 2 hysteresis	From 0 To 9999	1

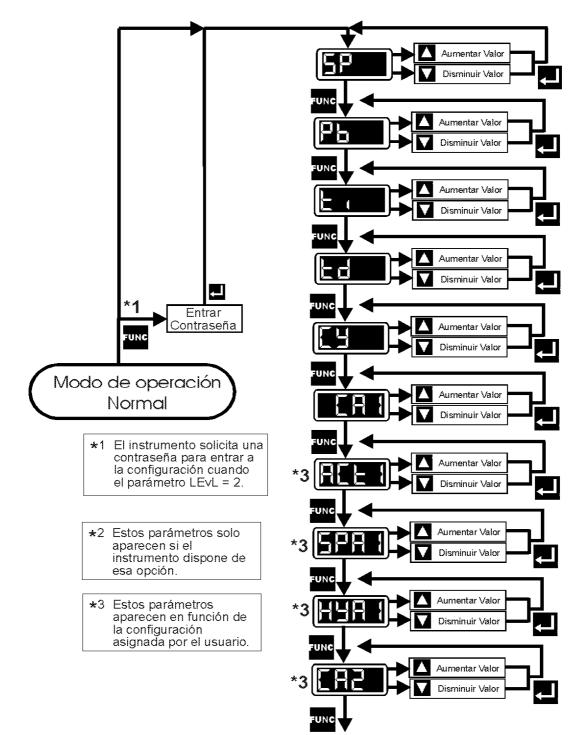
senso

nn82	Mask alarm 2	From 0 To 1	1
55P	Secondary Setpoint	From SPLL To SPHL	100
b, 85	Bias (value added to measured control variable)	From -999 To 9999	0
ոս դե	Temperature units	F Of	96
outl	Control Output top limit	From 0 To 100	100
SPHL	High limit of setpoint value	From SPLL + 1 To high input signal value	600
SPLL	Low limit of setpoint value	From low input signal value To SERL -1	0
AFFA	Autotune type	FL 月当 : relay feedback 5とEP : step response	-L8Y
SEFn	Start up function	Date : No special function Eure : Autotune on startup Man : Manual mode on startup	nØnE
0ut5	Value of power output at startup if the startup function is	From 0 To Duel	100
[223	Control type	Prd: control PID Prd: control PI+D	ይ ዓ
는 H는	End of preheating	From 5PLL To 5P	120
ιnΡ	Input sensor type	とこう」: Thermocouple J とこうど: Thermocouple K	tc-J
Addr	Modbus address of the device	From 1 To 255	1
6Rud	ModBus baudrate	2.4К : 2400 bps 4.8K : 4800 bps 9.6K : 9600 bps 19.2K : 19200 bps 38.4K : 38400bps 56.0K : 56000bps 57.6K : 57600bps	1922
<u> Prty</u>	Parity	EUEn : No parity EUEn : Even parity EUH : Odd parity	nonE
9787	ModBus delay	From Oms To 10ms	5

senso

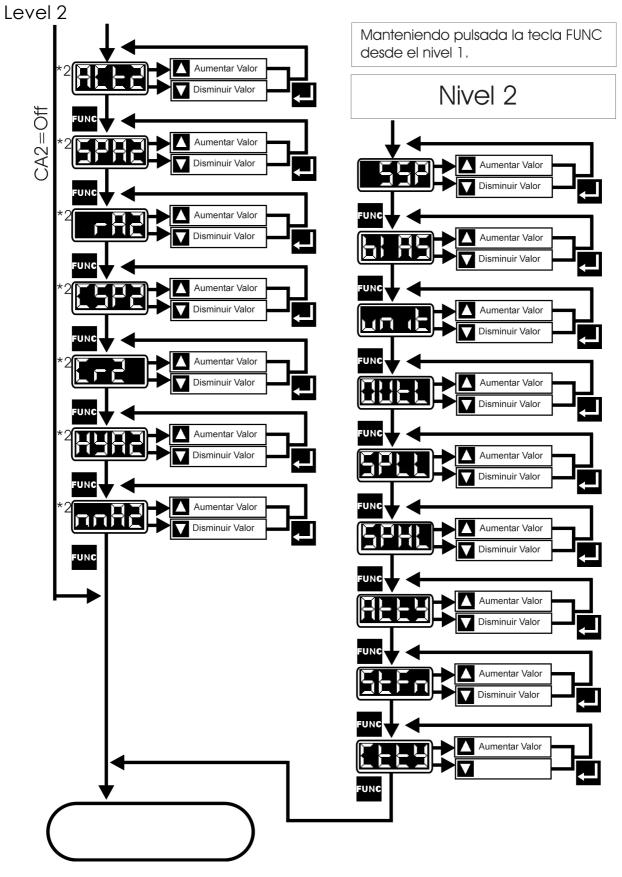
0

Current measure enable	0n : Enable 0FF : Disable	ØFF
Value showed in the display	RNP : Show current	RNP
Voltage line	From 100 To 265	220
Maximum number of power output cycles among current measures	From 0 To 120	30
Keyboard protection level	FFEE: Unlocked 5P: Only allowed Setpoint 5P: A: Only allowed SP and alarm Loch : Everything locked	FrEE

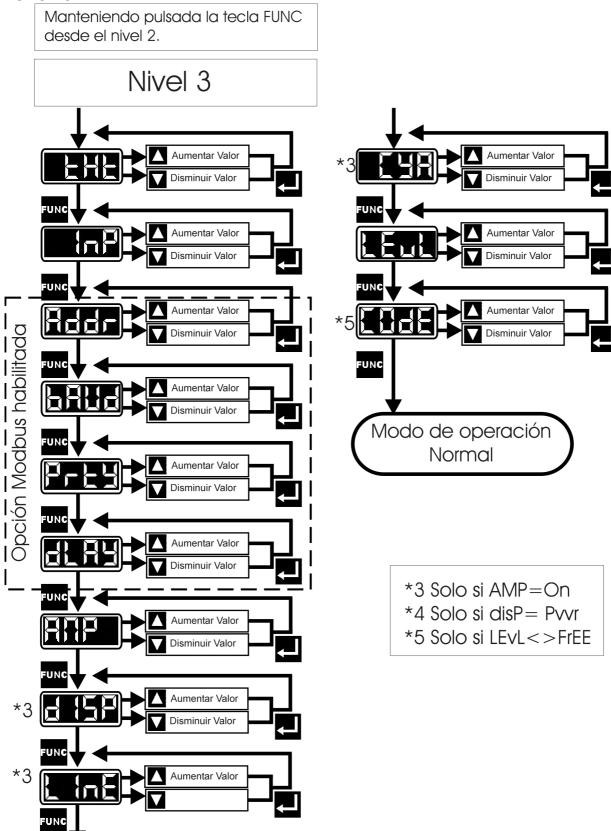

LEuL

Keyboard protection code

Everything locked From 0 To 9999


5.6. General diagram of menus

Level 1


...Página siguiente...

senso

Akros AK60 Ver. 1.0

senso

5.7 Keyboard lock

The keyboard can be locked entering a password to the parameter or trough the digital input. If keyboard lock is configured using digital input code will not be available. Keyboard can be locked. Level of protection is selected with parameter

FrEE	Unlocked
SP	Only the Set Point can be modified. Password is required to access the rest of parameters
SP R	Only the Set Point and alarm setpoint can be modified. Password is required to access the rest of parameters
LoCY	It is not possible to see and modify any parameter without password

If keyboard lock is setup using parameter **EEE**, controller will ask for password. When password is required, message **EEE** is shown and code can be set digit by digit. To select next digit use key **E**. Once desired code is set press **E**. Next parameter will be shown if code is correct. **E** message will be shown if password is not correct.

6. TECHNICAL SPECIFICATIONS

Size	Plug-in in RACK format EuroCard 100x160mm
Power supply	85265 Vca 50/60 Hz
Consumption	8 VA
Atmos. Temp.	050°C (interior use)
Relative humidity	máx. 80% non condensing
Altitude	máx. 2000 m
Installation Cat.	II as per EN61010-1
Degree of pollution	l as per EN61010-1
Display	4 digits of 10 mm for the process variable
	4 digits of 10 mm for the signal
Input	J : 0600°C (Fe-CuNi, IEC584)
	K: 01200°C (NiCr-NiAl, IEC584)
Precision	± 0,25% v.f.e
Control Output	Triac of 3500W
Alarm	Over temperatura protection with power intern stop
	protection. (Opcional)
Type of control	PID or PI+D, with 2 autotuning algorithms.
CE certification (for both	Seguridad: EN61010
industrial and commercial	EMI susceptibility: EN50082-1
environments)	EN61000-4-2, descargas electrostáticas EN61000-4-2, assuração electrostáticas
	EN61000-4-3, campos radiados EN/(1000-4-4, transitarias
	 EN61000-4-4, transitorios EN61000-4-5, onda de choque
	 EN61000-4-6, corrientes inyectadas EN61000-4-8, campo magnético
	 EN61000-4-8, campo magnetico EN61000-4-11, interrupciones de tensión
	EMI emission: EN50081-1
	EN55022-b, conducted emissions
	 EN55022-b, radiated emissions
	Harmonics: EN61000-3-2
	 Voltage fluctuations: EN61000-3-3

7. ERROR AND ALARM MESSAGES

Akros series modules can show different error or warning messages.

Error in the unit's internal electronics. If this message appears, the instrument must be sent to your nearest distributor for repair.

Error in the unit's internal memory. If this message appears, the instrument must be sent to your nearest distributor for repair.

The circuit of the input signal has been broken or else the input signal is over the top limit.

The input signal is below the bottom limit of the scale, or else the connections are inverted.

There is no current measurement sample acquired. This message can be shown for instance, while autotune is on because current sensing is suspended in order to don not interfere with the process.

It appears in case that the power is shown instead of current.

8. GUARANTEE AND SERVICE

This instrument is guaranteed against all kinds of manufacturing defect or faults in its component parts for one year as from the date of purchase. This guarantee includes repair or replacement of the faulty parts in our factory, free of charge, unless the fault is caused by mishandling of the equipment or any component of it has been changed.

Instruments requiring service or repair should be sent to your nearest distributor.

MILPUNTS S.L. Camí del Mig, 62 - 64, Carrer D - 15B 08349 - Cabrera de Mar - Barcelona T.(+34) 93 759 38 85 F.(+34) 93 759 37 24 www.senso.es

Akros AK60 Ver. 1.0